Coexistence of probe conformations in lipid phases-a polarized fluorescence microspectroscopy study.
نویسندگان
چکیده
Several well-established fluorescence methods depend on environment-sensitive probes that report about molecular properties of their local environment. For reliable interpretation of experiments, careful characterization of probes' behavior is required. In this study, bleaching-corrected polarized fluorescence microspectroscopy with nanometer spectral peak position resolution was applied to characterize conformations of two alkyl chain-labeled 7-nitro-2-1,3-benzoxadiazol-4-yl phospholipids in three model membranes, representing the three main lipid phases. The combination of polarized and spectral detection revealed two main probe conformations with their preferential fluorophore dipole orientations roughly parallel and perpendicular to membrane normal. Their peak positions were separated by 2-6 nm because of different local polarities and depended on lipid environment. The relative populations of conformations, estimated by a numerical model, indicated a specific sensitivity of the two probes to molecular packing with cholesterol. The coexistence of probe conformations could be further exploited to investigate membrane organization below microscopy spatial resolution, such as lipid rafts. With the addition of polarized excitation or detection to any environment-sensitive fluorescence imaging technique, the conformational analysis can be directly applied to explore local membrane complexity.
منابع مشابه
Fluorescence probe partitioning between Lo/Ld phases in lipid membranes.
Fluorescence microscopy imaging is an important technique for studying lipid membranes and is increasingly being used for examining lipid bilayer membranes, especially those showing macroscopic coexisting domains. Lipid phase coexistence is a phenomenon of potential biological significance. The identification of lipid membrane heterogeneity by fluorescence microscopy relies on membrane markers ...
متن کاملPhase fluctuation in phospholipid membranes revealed by Laurdan fluorescence.
The organization of lipids surrounding membrane proteins can influence their properties. We have used 6-dodecanoyl-2-dimethylaminonaphthalene (Laurdan) to study phase coexistence and phase interconversion in membrane model systems. The fluorescence properties of Laurdan provide a unique possibility to study lipid domains because of the different excitation and emission spectra of this probe in ...
متن کاملDetection of motional heterogeneities in lipid bilayer membranes by dual probe fluorescence correlation spectroscopy.
We report the detection of heterogeneities in the diffusion of lipid molecules for the three-component mixture dipalmitoyl-PC/dilauroyl-PC/cholesterol, a chemically simple lipid model for the mammalian plasma membrane outer leaflet. Two-color fluorescence correlation spectroscopy (FCS) was performed on giant unilamellar vesicles (GUVs) using fluorescent probes that have differential lipid phase...
متن کاملThe photophysics of a Rhodamine head labeled phospholipid in the identification and characterization of membrane lipid phases.
The organization of lipids and proteins into domains in cell membranes is currently an established subject within biomembrane research. Fluorescent probes have been used to detect and characterize these membrane lateral heterogeneities. However, a comprehensive understanding of the link between the probes' fluorescence features and membrane lateral organization can only be achieved if their pho...
متن کاملDynamic molecular structure of DPPC-DLPC-cholesterol ternary lipid system by spin-label electron spin resonance.
The hydrated ternary lamellar lipid mixture of dipalmitoyl-PC/dilauroyl-PC/cholesterol (DPPC/DLPC/Chol) has been studied by electron spin resonance (ESR) to reveal the dynamic structure on a molecular level of the different phases that exist and coexist over virtually the full range of composition. The spectra for more than 100 different compositions at room temperature were analyzed by nonline...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 105 4 شماره
صفحات -
تاریخ انتشار 2013